EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.
نویسندگان
چکیده
BACKGROUND/AIMS The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. METHODS Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. RESULTS EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. CONCLUSION EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries.
منابع مشابه
Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair.
Rotator cuff tear is one of the most common types of shoulder injuries, often resulting in pain and physical debilitation. Allogeneic tendon-derived decellularized matrices do not have appropriate pore size and porosity to facilitate cell infiltration, while commercially-available synthetic scaffolds are often inadequate at inducing tenogenic differentiation. The aim of this study is to develop...
متن کاملTendon-derived stem cells undergo spontaneous tenogenic differentiation.
Tendon-derived stem cell (TDSC) is a subpopulation of residing stem cells within the intact tendon tissues, with the capacities of self-renewal, clonogenicity, and three-lineage differentiation. Compared with bone marrow derived mesenchymal stem cells (BMSCs), TDSCs are superior for tendon injuries repair as they remain some tendon tissue-specific differentiation properties. In the present stud...
متن کاملStepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo.
UNLABELLED : Tendon injuries are common and present a clinical challenge, as they often respond poorly to treatment and result in long-term functional impairment. Inferior tendon healing responses are mainly attributed to insufficient or failed tenogenesis. The main objective of this study was to establish an efficient approach to induce tenogenesis of bone marrow-derived mesenchymal stem cells...
متن کاملCell- and gene-based approaches to tendon regeneration.
Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, an...
متن کاملSYMPOSIUM: NEW APPROACHES TO SHOULDER SURGERY Biological Augmentation of Rotator Cuff Tendon Repair
A histologically normal insertion site does not regenerate following rotator cuff tendon-to-bone repair, which is likely due to abnormal or insufficient gene expression and/or cell differentiation at the repair site. Techniques to manipulate the biologic events following tendon repair may improve healing. We used a sheep infraspinatus repair model to evaluate the effect of osteoinductive growth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2015